Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 156

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Uncertainty reduction of sodium void reactivity using data from a sodium shielding experiment

Maruyama, Shuhei; Endo, Tomohiro*; Yamamoto, Akio*

Journal of Nuclear Science and Technology, 61(1), p.31 - 43, 2024/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

This study investigated the feasibility of reducing the uncertainty associated with fast-reactor-core design by sharing an experimental database between different fields (e.g., reactor physics and radiation shielding) using data assimilation techniques. As the first step in this study, we focused on the ORNL sodium shielding experiment and investigated the possibility of using the experimental data to reduce the uncertainty in sodium void reactivity (SVR), which is the most important safety parameter for sodium-cooled fast reactors. A sensitivity analysis based on the Generalized Perturbation Theory was performed for the sodium shielding experiment. Using the sensitivity coefficients evaluated here and those of the sodium void reactivity previously evaluated by the JAEA, we showed that sodium shielding experimental data can contribute to the uncertainty reduction of SVR by adopting the cross-section adjustment method. Based on this study, the uncertainty reduction effect is expected to be significant, especially for SVR dominated by neutron-leakage phenomena. Although new reactor physics experimental data on SVR may be difficult to obtain, the results of this study suggest that data from sodium shielding experiments can partially substitute for this role. This study demonstrated the value of the mutual use of integral experimental data in fast reactor designs.

Journal Articles

Measurement of void fraction distribution

Kureta, Masatoshi

Ryutai Keisokuho; Kaitei-Han, p.367 - 371, 2022/04

The Japan Society of Mechanical Engineers publishes a revised version of the technical document summarizing fluid measurement techniques. This article is part of the application section, and the main content is an introduction of application examples using advanced thermal-fluid measurement technology that is progressing remarkably. In the chapter "Void Fraction Distribution Measurement", the technology for visualizing and measuring the void fraction distribution with neutron beams for the two-phase flow of gas-liquid flowing inside the instrument is summarized. In the first half, the definition of void fraction, measurement by neutron transmission method, and basic principles of CT imaging technology were explained. In the second half, visualization and measurement results were shown in the order of two-dimensional and two-dimensional time changes of various multiphase flows, and three-dimensional and three-dimensional time changes.

Journal Articles

Effect of nickel concentration on radiation-induced diffusion of point defects in high-nickel Fe-Cr-Ni model alloys during neutron and electron irradiation

Sekio, Yoshihiro; Sakaguchi, Norihito*

Materials Transactions, 60(5), p.678 - 687, 2019/05

 Times Cited Count:5 Percentile:29.02(Materials Science, Multidisciplinary)

The quantitative evaluation of vacancy migration energies in high nickel model alloy was conducted by analyzing the void denuded zone (VDZ) width formed near grain boundaries under neutron and electron irradiation. The microstructures of Fe-15Cr-xNi (x=15, 20, 25, 30 mass%) alloys that were neutron irradiated at 749 K and electron irradiated at 576 K-824 K were examined. The VDZ widths increased with increasing Ni content in both irradiation experiments, which implies an increase of the vacancy mobility. The vacancy migration energies were estimated from the temperature dependence of the VDZ widths, and the energies were 1.09, 0.97, 0.90, and 0.77 eV for the alloys containing 15, 20, 25, and 30 mass% Ni, respectively. From the obtained energies, the effective vacancy diffusivity and excess vacancy concentration were estimated using the analytical equation of the VDZ width, which quantitatively confirmed the increase of the vacancy mobility with increasing Ni content.

Journal Articles

Austenite-based stainless steel irradiation behavior of the precipitate and void swelling

Inoue, Toshihiko; Sekio, Yoshihiro; Watanabe, Hideo*

Materia, 58(2), P. 92, 2019/02

For the evaluation of irradiated segregation behavior, Austenite-based stainless steel for the fast reactor, during irradiation was evaluated by utilizing TIARA facility (Irradiate temperature: 600 $$^{circ}$$C, Dose: 100 dpa) was observed by analytical electron microscope (JEM-ARM20FC). As a result of observation, the large-size void is observed in irradiation area, and MX segregation (containing Niobium) is not observed. In un-irradiation area the MX segregation is observed. And it is observed conspicuously that Nickel is segregation on the void surface. By the latest high-performance TEM utilization, these phenomenon are able to visualize. It is expected for the clarification of the irradiation damage and mechanism of void swelling, by the analyzing these phenomenon utilization with the latest high-performance TEM utilization.

Journal Articles

Study on heterogeneous minor actinide loading fast reactor core concepts with improved safety

Ohgama, Kazuya; Oki, Shigeo; Kitada, Takanori*; Takeda, Toshikazu*

Proceedings of 21st Pacific Basin Nuclear Conference (PBNC 2018) (USB Flash Drive), p.942 - 947, 2018/09

Journal Articles

Estimation of porosity and void fraction profiles in a packed bed of spheres using X-ray radiography

Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Matsuba, Kenichi; Kamiyama, Kenji

Nuclear Engineering and Design, 334, p.90 - 95, 2018/08

 Times Cited Count:9 Percentile:62.99(Nuclear Science & Technology)

Two-phase flow through porous media must be well understood to develop a severe accident analysis code not only for light water reactor but also sodium-cooled fast reactor. When a core disruptive accident occurs in sodium-cooled fast reactor, the fuel inside the core become melted and interacts with the coolant. As a result, gas-liquid two-phase flow will be formed in the debris bed, which may have porous nature depending on the cooling process. In such condition, the local porosity and its distribution are very important to characterize two-phase flow field in the porous media. In this study, X-ray radiography was applied to measure the local porosity in the packed bed of spheres. The radial profiles were estimated from the chordal profiles measured by the X-ray method and compared with the previous porosity model. In addition, the void fraction radial profiles were also obtained in air-water two-phase flow.

Journal Articles

Measurement of void fraction distribution in air-water two-phase flow in a 4$$times$$4 rod bundle

Liu, W.; Jiao, L.; Nagatake, Taku; Shibata, Mitsuhiko; Komatsu, Masao*; Takase, Kazuyuki*; Yoshida, Hiroyuki

Proceedings of 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety (NUTHOS-11) (USB Flash Drive), 10 Pages, 2016/10

To contribute the clarification of the Fukushima Daiichi Accident, Japan Atomic Energy Agency (JAEA) has been performed experiments to obtain void fraction distribution data, including detailed bubble information such as bubble velocity and size, in steam-water two-phase flow in rod bundle geometry under high pressure and high temperature condition, focusing on low flow rate at the core natural circulation flow condition after the reactor scram. In this research, experimental apparatus for measuring void fraction distribution in the 4$$times$$4 rod bundle was constructed. To measure the void fraction distribution under high pressure and high temperature condition (up to 2.8 MPa, 232 $$^{circ}$$C), two wire mesh sensors (WMSs) were installed. To confirm the applicability of the installed WMSs and the measuring system for two-phase flow in rod bundle, experiments in air-water two-phase flow under atmospheric pressure and room temperature were performed. As a result, it was confirmed that the installed WMSs can be applicable to the two-phase flow in rod bundle. Measured results, such as instantaneous and time-averaged void fraction distribution in the rod bundle, average void fraction across the cross section of the flow channel, bubble length and velocity, were also reported.

Journal Articles

Experiment and analytical studies on bubbly flow behavior around a spacer in circular duct

Sakka, Taku*; Jiao, L.; Uesawa, Shinichiro; Yoshida, Hiroyuki; Takase, Kazuyuki

Nihon Kikai Gakkai 2015-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 5 Pages, 2015/09

no abstracts in English

Journal Articles

Enhanced damage buildup in C$$^{+}$$-implanted GaN film studied by a monoenergetic positron beam

Li, X. F.*; Chen, Z. Q.*; Liu, C.*; Zhang, H.; Kawasuso, Atsuo

Journal of Applied Physics, 117(8), p.085706_1 - 085706_6, 2015/02

 Times Cited Count:23 Percentile:68.13(Physics, Applied)

Vacancy-type defects in C$$^{+}$$-implanted GaN were probed using a slow positron beam. The increase of Doppler broadening S parameter indicates introduction of arge vacancy clusters. Post-implantation annealing at temperatures up to 800$$^{circ}$$C makes these vacancy clusters to agglomerate into microvoids. The vacancy clusters or microvoids show high thermal stability, and they are only partially removed after annealing up to 1000$$^{circ}$$C. Amorphous regions are observed by high resolution transmission electron microscopy measurement, which directly confirms that amorphization is induced by C$$^{+}$$-implantation. The disordered GaN lattice is possibly due to special feature of carbon impurities, which enhance the damage buildup during implantation.

Journal Articles

Three-dimensional numerical predictions on two-phase flow behavior in advanced light water reactors

Ose, Yasuo*; Takase, Kazuyuki; Yoshida, Hiroyuki; Kano, Takuma; Akimoto, Hajime

Dai-18-Kai Suchi Ryutai Rikigaku Shimpojiumu Koen Yoshishu (CD-ROM), 6 Pages, 2004/12

no abstracts in English

Journal Articles

Visualization of boiling two-phase flow in a tight-lattice 14-rod bandle

Kureta, Masatoshi

Kashika Joho Gakkai-Shi, 24(Suppl.1), p.265 - 268, 2004/07

Visualization of 3D and instantaneous void fraction distribution of boiling flow in a tight-lattice 14-rod bundle is conducted by using neutron tomography and high-frame- rate neutron radiography void fraction measurement techniques. The purpose of the experiment is to understand vapor bubbles/water behavior ranging from the onset of boiling to the high void fraction region based on ("3D" + "2D+Time") void fraction data, and to obtain the fine-mesh database for verification of advanced analysis codes. Following phenomena are made clear from the present experiment: Vapor accumulates in the channel center; High void fraction spots appear between adjacent heater rods, that is, in narrow space at the inlet; Void fraction in the triangular space among three rods becomes high by void drift phenomenon, and "vapor chimney" is formed; Flow is intermittent, and vapor bubble clusters are formed periodically; Onset points of net vapor generation are scattered not only in the center but in the peripheral.

Journal Articles

A Large-scale simulation of two-phase flow around fuel rods in coolant channels of nuclear reactor cores

Takase, Kazuyuki; Yoshida, Hiroyuki; Ose, Yasuo*

Dai-23-Kai Nihon Shimyureshon Gakkai Taikai Happyo Rombunshu, p.121 - 124, 2004/06

no abstracts in English

Journal Articles

3D measurement of void distribution of boiling flow in a tight-lattice rod bundle by neutron tomography

Kureta, Masatoshi; Tamai, Hidesada

Proceedings of 5th International Conference on Multiphase Flow (ICMF 2004) (CD-ROM), 10 Pages, 2004/06

3D void fraction distribution of boiling flow in a tight-lattice 7-rod bundle was measured by neutron radiography 3D computed tomography (neutron tomography) to investigate the flow characteristics in tight-lattice rod bundles and to verify the numerical analysis codes. The test section simulates the fuel rod bundle of the RMWR and consists of 7 heater rods with gap of 1.0mm and with diameter of 12.0mm. In this paper, the neutron tomography system, experiments and comparison of the measured data with a subchannel analysis code, COBRA-TF, are reported. It was found from this experiment that water layer which surrounds the heater rod becomes thick between rods, narrow region, and steam accumulates at the center region among three rods. COBRA-TF code overestimates the void fraction in a tight-lattice bundle compared with the present data.

Journal Articles

Large-scale numerical simulation on two-phase flow behavior in a tight-lattice nuclear fuel bundle

Ose, Yasuo*; Takase, Kazuyuki; Yoshida, Hiroyuki; Kano, Takuma; Kureta, Masatoshi; Akimoto, Hajime

Dai-41-Kai Nihon Dennetsu Shimpojiumu Koen Rombunshu, 2 Pages, 2004/05

no abstracts in English

Journal Articles

Numerical analysis of two-phase flow characteristics in a reduced-moderation light water reactor

Takase, Kazuyuki; Yoshida, Hiroyuki; Ose, Yasuo*; Tamai, Hidesada; Akimoto, Hajime

Transactions of the American Nuclear Society, 89, p.88 - 89, 2003/11

no abstracts in English

Journal Articles

Design of small reduced-moderation water reactor

Okubo, Tsutomu; Iwamura, Takamichi; Takeda, Renzo*; Moriya, Kumiaki*; Yamauchi, Toyoaki*; Aritomi, Masanori*

Nihon Kikai Gakkai 2003-Nendo Nenji Taikai Koen Rombunshu, Vol.3, p.245 - 246, 2003/08

A design study on a 300MWe class small Reduced-Moderation Water Reactor (RMWR) has been performed, based on the experienced LWR technology. The core can be cooled by the natural circulation and can achieve a conversion ratio of 1.01, a negative void reactivity coefficient, a core average burn-up of 65 GWd/t and a cycle length of 25 months. The system has been simplified as much as possible by introducing the passive safety components, in order to reduce the construction cost per electric power output overcoming “the scale demerit" for a small reactor comparing with the large one. The results show a 1.35 times higher cost than for the ABWR case, but suggest the possible lower cost when the effects such as the mass production are taken into account.

Journal Articles

Measurement technique of two-phase flow by neutron tomography

Kureta, Masatoshi

Funryu Kogaku, 20(2), p.24 - 31, 2003/07

no abstracts in English

JAEA Reports

Improvement of instantaneous measurement-type void fraction meter; Design of high speed response rectifier

Shibamoto, Yasuteru; Sagawa, Jun*; Iguchi, Tadashi; Nakamura, Hideo

JAERI-Tech 2003-056, 29 Pages, 2003/06

JAERI-Tech-2003-056.pdf:3.24MB

no abstracts in English

Journal Articles

Void fraction measurement of boiling flow by high-frame-rate neutron radiography

Kureta, Masatoshi

Kashika Joho Gakkai-Shi, 23(89), p.21 - 26, 2003/04

no abstracts in English

JAEA Reports

Design study on PWR-type reduced-moderation light water core; Investigation of core adopting seed-blanket fuel assemblies

Shimada, Shoichiro*; Kugo, Teruhiko; Okubo, Tsutomu; Iwamura, Takamichi

JAERI-Research 2003-003, 72 Pages, 2003/03

JAERI-Research-2003-003.pdf:3.82MB

As a part of the design study on PWR-type Reduced-Moderation Water Reactors (RMWRs), a light water cooled core with the seed-blanket type fuel assemblies has been investigated. An assembly with seed of 13 layers and blanket of 5 layers was selected by optimization calculations. The core was composed with the 163 assemblies. The following results were obtained by burn-up calculations with the MVP-BURN code; The cycle length is 15 months by 3-batch refueling. The discharge burn-up including the inner blanket is about 25 GWd/t. The conversion ratio is about 1.0. The void reactivity coefficient is about -26.1pcm/%void at BOC and -21.7pcm/%void at EOC. Effects of about 10% of MA or about 2 % of FP on core performances were investigated, and they were confirmred within the design margins. Capability of multi-recycling of plutonium was confirmed, using discharged plutonium for 4 cycles, if fissile plutonium of 15.5wt% is used.

156 (Records 1-20 displayed on this page)